Petite précision autour des martingales

Je profite de l’occasion pour répondre à une partie des questions qui me sont régulièrement adressée par email concernant les martingales. A noter que l’article sur les martingales de wikipedia vient d’être mis à jour très récemment pour y ajouter une partie traitant des martingales mathématiques, extrait que je vais reprendre ci-dessous.

Mais avant toute chose et pour ça soit très clair : les martingales ne permettent pas de gagner d’argent et vont vous ruiner ! Il est donc bien clair que cet article n’a pas pour objet de vous convaincre de leur utilité dans le turf et pour votre pronostic pmu. Je vais quand même en remettre une couche : n’utilisez pas de méthodes basées sur une martingale quel qu’elle soit pour gagner au turf.

Martingales et mathématiques

Une martingale est destinée à optimiser la probabilité de gagner mais ne change en rien l’espérance mathématique des gains, qui reste à la défaveur du joueur.

Loi de Dubins et Savage

Mathématiquement, Lester Dubins et Leonard Savage ont démontré en 1956 que la meilleure façon de jouer dans un jeu où les probabilités sont défavorables au joueur consiste à miser toujours ce qui permet d’approcher le plus rapidement le but visé. Intuitivement ce résultat semble évident : si à chaque partie on a plus de chances de perdre que de gagner, autant minimiser le nombre de parties jouées. Ce résultat signifie également, qu’à moins de disposer d’une mise de départ infinie, il n’existe pas de stratégies permettant de renverser les probabilités en votre faveur dans un jeu qui vous est défavorable.

Même dans le cas d’un jeu équitable, le joueur qui a à la fois la possibilité et la volonté de miser le plus se donne plus de chances de ruiner son adversaire et donc de l’empêcher de continuer à jouer : ainsi, au prix d’une perte potentielle plus grande, il se donne aussi plus de chance de gagner. Comme dans toute martingale, cela ne modifie toutefois pas l’espérance des deux joueurs (c’est-à-dire le plus « petit joueur » a moins de chance de gagner mais, aussi paradoxal que ça paraisse, il peut gagner plus !).

Probabilités

Il existe cependant certains jeux de hasard qui ne sont pas systématiquement défavorables au joueur. On peut citer par exemple le cas de William Jaggers qui gagna une forte somme à Monte-Carlo au xixe siècle en étudiant systématiquement les fréquences de sortie des numéros à la roulette. Il put ainsi déterminer certains numéros qui avaient une probabilité de sortie qui lui était favorable. Aujourd’hui les casinos se protègent contre ce genre de pratiques en entretenant soigneusement leur matériel, si bien que les dispersions sont extrêmement faibles. Ceci signifie que les probabilités de sortie d’un numéro donné sont au mieux très légèrement favorables au joueur. Il faudrait donc parier un nombre immense (souvent pendant plusieurs mois) de fois des petites sommes pour espérer un gain probablement très loin de rémunérer les efforts consentis.

Les méthodes de turf basées sur des martingales sont dangereuses

Le black jack est un jeu qui possède des stratégies gagnantes : plusieurs techniques de jeu, qui nécessitent généralement de mémoriser les cartes, permettent de renverser les chances en faveur du joueur. Le mathématicien Edward Thorp a ainsi publié en 1962 un livre Beat the Dealer qui fut à l’époque un véritable best-seller. Mais toutes ces méthodes demandent de longues semaines d’entraînement et sont facilement décelables par le croupier (les brusques changements de montant des mises sont caractéristiques). Le casino a alors tout loisir d’écarter de son établissement les joueurs en question. Le black jack reste pourtant le jeu le moins défavorable au joueur : l’avantage du casino n’est que de 0,66 % face à un bon joueur, il est de 2,7 % à la roulette et jusqu’à 10 % pour les machines à sous.

Le Backgammon bien qu’étant un jeu de dés permet de développer des stratégies gagnantes sur un grand nombre de parties. En effet l’arbitrage entre les différents déplacements de pions s’apparente à un mouvement quasi mathématique de style wargame et pouvant être représenté par des graphes probabilistes. Le jeu peut se résumer en un processus séquentiel de Markov. Aussi étrange que cela puisse paraître, ce jeu peut s’appliquer en assurance dans la gestion des risques de manière générale. Les arbitrages constants que doivent effectuer les joueurs peuvent être représentés dans une matrice de Léontiev. De tels outils peuvent « perdre » devant un joueur même inexpérimenté si celui-ci bénéficie de jets de dés favorables mais il est incontestable que plus le nombre de parties est élevé, plus la formule de Stirling et la loi des grands nombres de Bernoulli s’appliquent et permettent à une machine intelligente de gagner presque tout tournoi au-delà de 50 parties.

Les méthodes évoluées pour le loto

martingale pour le loto ne marche pas non plus

Il existe des méthodes assez évoluées. L’une d’elles repose sur les combinaisons les moins jouées. Dans les jeux où le gain dépend du nombre de joueurs gagnants (Loto…), jouer les combinaisons les moins jouées optimisera les gains. On peut tout de même deviner que certains numéros sont joués plus souvent : beaucoup de joueurs cochant leur date de naissance, ou une autre date, les numéros 1, 9, et 19 correspondants à l’année sont très souvent joués. Il en est de même des 12 premiers numéros correspondants aux mois. Mais Il ne suffit pas de prendre les nombres supérieurs à 31 et de les associer aléatoirement ; la psychologie des joueurs est beaucoup plus complexe. Par exemple 41-42-43-44-45 ne fait pas partie des combinaisons les moins jouées. On peut même dire qu’elle fait partie des plus jouées. Cette méthode perd de l’intérêt à mesure que, dans les différentes loteries, la proportion de joueurs qui demandent un ticket comprenant des numéros tirés aléatoirement par un ordinateur (« tirage flash ») augmente. Si le biais humain est facilement mesurable et quantifiable, on peut considérer que celui de l’ordinateur ne l’est pas (ou en tout cas pas à un niveau qui permettrait d’augmenter ses gains).

Les méthodes miraculeuses

Un certain nombre de revues ou de sites Internet prétendent vous renseigner sur la « forme » des numéros, c’est-à-dire leur probabilité de sortir dans les prochains tirages. Voici par exemple un tirage de 50 boules de loto : 39, 38, 42, 29, 18, 48, 40, 36, 9, 24, 49, 33, 47, 9, 45, 7, 11, 49, 16, 28, 27, 25, 16, 27, 22, 48, 5, 24, 16, 6, 4, 14, 17, 44, 46, 9, 37, 22, 39, 12, 33, 9, 21, 44, 11, 33, 19, 20, 37, 18. On s’aperçoit que la boule 9 est sortie 4 fois alors que la boule 8 n’est jamais sortie. À la suite de calculs savants, les auteurs de ces « méthodes » vous diront alors que le chiffre 9 est en forme et qu’il va donc sortir dans les prochains tirages ou au contraire que la loi des grands nombres implique que le 8 va sortir pour combler son retard.

Il s’agit bien entendu là d’une erreur logique qui lorsqu’elle est propagée sciemment relève de l’escroquerie. Les boules de loto ne s’amusent pas à compter le nombre de fois où elles sont sorties de la machine, d’autant plus qu’il faudrait qu’elles soient suffisamment coquettes pour ne pas prendre en compte les tirages de tests ou de calibrage des machines. Si chaque boule a en moyenne une chance sur 49 de sortir, cette probabilité n’est atteinte que pour un nombre infiniment grand de tirages. Le fait que la boule 9 soit sortie 4 fois de plus que la boule 8 n’a donc aucune importance puisque les probabilités ne garantissent pas que chaque boule va sortir le même nombre de fois, mais simplement que la différence du nombre de sorties de deux boules sera très petite par rapport au nombre total de tirages : rien ne dit que la boule 8 va finalement rattraper son retard. Par exemple, si au bout de dix mille tirages la boule 9 est sortie 206 fois et la boule 8 est sortie 202 fois, on obtiendra une fréquence de 1,01/49 et 0,99/49. Au millionième tirage si la boule 9 est sortie 20410 fois et la boule 8 est sortie 20406 fois on obtiendra respectivement 1,0001/49 et 0,9999/49. Les fréquences s’approchent de plus en plus de la probabilité théorique de 1/49, pourtant la boule 9 conserve son avance de quatre sorties sur la boule 8.

D’autres reposent sur le pari d’un biais systématique : les tirages ne sont pas exactement équiprobables, à la suite par exemple d’infimes différences de poids des boules. Même si le calcul de l’espérance mathématique de ce type de martingale est beaucoup plus complexe, le bon sens indique que si l’auteur de la recette trouve plus rentable de la vendre que de l’utiliser pour son propre compte, c’est probablement que son efficacité est à peu près nulle.

Contenu soumis a la licence CC-BY-SA. Source : Article Martingale de WIKIPEDIA EN FRANCAIS

This entry was posted in Général. Bookmark the permalink.

3 Responses to Petite précision autour des martingales

  1. neurone says:

    Bonjour,
    Merci pour vos pages web, vous semblez calé. Alors j’aurais une simple question concernant les numéros en forme : à la roulette, bien que la probabilité de sortie de chaque numéro en 37 boules soit de 1 chance sur 37, les 37 numéros de la roulette n’apparaissent pas tous au cours d’un cycle de 37 boules. Environ 1/3 des boules (12 numéros) sort plusieurs fois, environ un autre 1/3 (12 autres numéros) sort une seule fois, et le dernier 1/3 environ (12 autres numéros) ne sort pas du tout !!!
    C’est cette particularité qui me questionne sur la pertinence de l’idée qu’on a d’une boule « en forme », ayant une chance sur 37 de sortie et cette notion d’indépendance des tirages ! (Un petit programme en C avec la fonction pseudo aléatoite rand(), lié au travaux d’E.Borel, se comporte tout aussi « bien », sur des dizaines de milliers tirages de jeux)
    Qu’en pensez vous ?

    Cdt
    Neurone

    • Tom says:

      On ne peut pas parler statistique sur un échantillon de 37 tirages, si la roulette fonctionne correctement et que le croupier fait ses lancés de billes sans chercher à interférer avec le résultat alors chaque numéro à la même probabilité de tomber.

  2. DAVID says:

    très bien expliqué

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Vous pouvez utiliser ces balises et attributs HTML : <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>